QUESTION BANK 2016

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MATHEMATICS-III(15A54301)

Course & Branch: B.Tech(ECE)

[10 M]

Year & Sem: II-B.Tech & I-Sem

Regulation: R15

<u>UNIT –I</u>

1.	a) Find the rank of the	e ma	ıtrix	[3 -6 -3	- 2 1	1 2 4 by using Echelon form. 2	[5 M]
	b) Reduce the matrix	1 2 3	2 1 0	3 4 5 :	4 4 10	nto normal form. Find its rank.	[5 M]
2.	Find whether the follo	owin	ig sy	stem	ofe	quations are consistent. If so solve them	

$$x + 2y + 2z = 2; 3 x - 2y - z = 5; 2x - 5y + 3z = -4; x + 4y + 6z = 0.$$
 [10 M]

3. Determine whether the following equations will have a non-trivial solutions, if so solve them 4x + 2y + z + 3w = 0; 6x + 3y + 4z + 7w = 0; 2x + y + w = 0. [10 M]

4. Discuss for what values of λ and μ , the simultaneous equations x + y + z = 6

x + 2y + 3z = 10; $x + 2y + \lambda = \mu$ have *i*) no solution *ii*) a unique solution

- iii) An infinite many solutions.
- 5. Find the characteristic equation of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the matrix represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$. [10 M] 6. Verify Cayley Hamilton theorem for the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ find A^{-2} and A^4 using

Cayley Hamilton theorem. $\begin{bmatrix} 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ find **A** and **A** using $\begin{bmatrix} 10 \text{ M} \end{bmatrix}$

 7. Reduce the quadratic form to the sum of squares form by orthogonal reduction. Find index, Nature and Signature of the quadratic form 2x² + 2y² + 2z² - 2yz - 2zx - 2xy. [10 M]

8. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form by

Orthogonal reduction. Find index, nature and signature of the quadratic form. [10 M]

9. a) If
$$A = \begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3+i & 4 \end{bmatrix}$$
 then prove A is Hermitian and *iA* is Skew-Hermitian.

b) Prove that
$$\frac{1}{2}\begin{bmatrix} 1+i & -1+i\\ 1+i & 1-i \end{bmatrix}$$
 is unitary matrix. [5 M]

Mathematics-III

QUESTION BAN	JK 2016
10. a) Define rank of a matrix.	[2 M]
b) Test for the consistency of $x + y + z = 6$; $x - y + 2z = 5$; $3x + y + z = -8$.	[2 M]
c) Find the Eigen values of the matrix $\begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$.	[2 M]
d) Define Hermitian matrix and Skew- Hermitian matrix.	[2 M]
e) State Cayley Hamilton Theorem.	[2 M]

Prepared by: N.RAJAGOPAL REDDY

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : MATHEMATICS-III(15A54301) Course & Branch: B.Tech(ECE) Year & Sem: II-B.Tech & I-Sem **Regulation:** R15 <u>UNIT – I</u> 1. If $A = \begin{vmatrix} b & a \end{vmatrix}$ is singular matrix then $a^3 + b^3 + c^3 = b^3$ [] C)(abc)³ A) 3abc D) 1 B) *abc* 2. A square matrix **A** is symmetric if] [$\mathbf{A}\mathbf{)}\mathbf{A}^{T}\mathbf{A} = \mathbf{0}$ B) $A^T A = 1$ $\mathbf{C}\mathbf{A}^{T}=-\mathbf{A}$ D) $A^T = A$ 3. A square matrix A is skew-symmetric if 1 Γ $\mathbf{C}\mathbf{A}^{T}=-\mathbf{A}$ $\mathbf{A}\mathbf{A}^{T}\mathbf{A} = \mathbf{0}$ B) $A^T A = 1$ D) $A^T = A$ 4. The diagonal elements of a skew-symmetric matrix are all 1 ſ A) real B) imaginary C) zero D) one 5. A square matrix A is an orthogonal matrix if ſ 1 A) $A^{1}A = I$ B) $A^T A = I$ $C A^T = -A$ D) $A^T = A$ 6. The rank of 3×3 non-singular matrix A is 1 ſ B) 0 A)2 C)1 D) 3 7. The rank of the singular matrix of order **3** is 1 ſ A) \leq 3 $B) \leq 2$ C)1 D) 3 8. The system of equations are consistent, if 1 ſ C) $\rho(A) = \rho(AB)$ D) None A) $\rho(A) < \rho(AE)$ B) $\rho(A) \neq \rho(AB)$ 9. The system of linear equations has infinite many solution, if 1 ſ C) $\mathbf{r} = \mathbf{n}$ A) $\mathbf{r} < \mathbf{n}$ B) $\mathbf{r} \neq \mathbf{n}$ D) None

Mathematics-III

	QUESTION BANK	2016
10. The system of linear equations has unique solution, if A) $r < n$ B) $r \neq n$ C) $r = n$	[D) None]
11. The system of linear equations has $AX = 0$ is	[]
A) Homogeneous B) non – homogeneous C)consistent	D) None	
12. The system of linear equations has trivial solution, ifA) $X < 0$ B) $X \neq n$ C) $X = n$	[D) X = 0]
13. The system of equations are inconsistent, if A) $\rho(A) < \rho(AE)$ B) $\rho(A) \neq \rho(AB)$ C) $\rho(A) = \rho(AB)$	[D) None]
14. The rank of a unit matrix order 4 is	[]
A)2 B) 4 C)1	D) 3	
15. The rank of the singular matrix of order 3 is	[]
A) \leq 3 B) 2 C) 1	D) 3	
16. The transpose of an orthogonal matrix is A) symmetricB) unitaryC) orthogonal	[D) Hermitian]
17. The maximum value of the rank of a 4×5 matrix is	[]
A)2 B) 4 C)5	D) 3	
18. If A is a symmetric matrix then $A^{n}(n \text{ is positive integer})$ is	[]
A) symmetric B) unitary C) orthogonal	D) Hermitian	
19. The diagonal elements of a Skew-Hermitian matrix are allA) realB) purly imaginaryC) zero	[D) None]
20. The diagonal elements of a Hermitian matrix are all A) <i>purly</i> imaginary B) real C) <i>zero</i>	[D) None]
21. A square matrix is said to be unitary if $A A^{\theta} A^{T} = A$ $B A^{\theta} A = I$ $C A^{\theta} A = 0$	[D) None]
22. Inverse f a unitary matrix is A)Hermitian B) unitary C) orthogonal	[D) symmetric]
23. The Eigen values of the unit matrix of order 3 is	[]
A) 0,0,1 B) 1,1,0 C) 1,1,1	D) 1, -1,1	
24. If one of the Eigen value is of a square matrix A, then the trace	of A is []
A) singular B)symmetric C) orthogonal	D) non – singul	ar
25. If 1_{z} - $1_{z}2$ be the Eigen value is of a square matrix A, then the tra	ace of A is []
A)-2 B)0 C) 3	D) 2	
26. The characteristic equation of the square matrix A is	[]
A) $ \mathbf{A} - \lambda \mathbf{I} $ B) $ \mathbf{A} - \lambda \mathbf{I} \neq 0$ C) $ \mathbf{A} - \lambda \mathbf{I} = 0$	$D) \left[A - \lambda I \right] = 0$	
27. The latent root of $\begin{bmatrix} a & h & y \\ 0 & b & 0 \\ 0 & 0 & z \end{bmatrix}$ are	[]
A) $a, 0, c$ B) a, b, c C) a, h, c	D) 0.0.0	
28. If $D = P^{-1}AP$ then $A^2 =$	~,- <u>,-</u> [1
A) $P^{-1}A^2P$ B) $P^{-1}AP$ C) PDP^{-1}	D) PD²P⁻¹	L
29 The Figen values of $\begin{bmatrix} 0 & i \end{bmatrix}_{are}$	-,- - -	1
$\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i$		1
A) $i_i i_j = \mathbf{B} 1_i - \mathbf{I} = \mathbf{C} 1_i - \mathbf{I}$	D) -1, -1	
Mathematics-III		

QUESTION BANK 2016

30. If a square matrix A satisfies $A^{T}A = I$, then the matrix is [
A) symmetric	B) hermitian	C)unitary	D) orthogon	al						
31. The symmetric matr	. The symmetric matrix associated with the quadratic form $x^2 + 3y^2 - \delta xy$ [
$A)\begin{bmatrix} 1 & -4 \\ -4 & 3 \end{bmatrix}$	$\mathbf{B} \begin{bmatrix} 1 & -4 \\ 4 & -3 \end{bmatrix}$	$C \begin{bmatrix} 1 & 4 \\ 4 & -3 \end{bmatrix}$	$D) \begin{bmatrix} 1 & 4 \\ -4 & -3 \end{bmatrix}$]						
32. If A is Hermitian ma	. If A is Hermitian matrix then iA is [
A) symmetric	B) <i>skew</i> – hermitia	an C)hermitian	D) None							
33. The symmetric matr	3. The symmetric matrix of the quadratic form $ax^2 + by^2 - 2hxy$ is [
$A)\begin{bmatrix} a & -1 \\ -1 & b \end{bmatrix}$	$\mathbf{B} \begin{bmatrix} a & -h \\ -1 & b \end{bmatrix}$	$C)\begin{bmatrix} a & -h \\ -h & b \end{bmatrix}$	D) $\begin{bmatrix} a & -1 \\ -h & b \end{bmatrix}$]						
34. The Eigen values of	The Eigen values of A are 0,1,2 then the nature of the quadratic form is [
A) positive definite	ļ	B) positive semi de	efinite							
C)negative definite		D) indefinite								
35. The Eigen values of	35. The Eigen values of A are -1,-4,-4 then the index of the quadratic form is									
A) 1	B) 2	C) 3	D) 0							
36. The Eigen values of	A are 0,0,6 then the sig	gnature of the quadrat	ic form is	[]					
A) 1	B) 2	C) 3	D) 0							
37. The index and signa	ture of the quadratic fo	$x^2 + 3y^2 + 3z^2 - 3z^2$	- 2zy are	[]					
A) 2,3	B) 2,1	C) 3,3	D) 0,1							
38. If the canonical form	n of a quadratic form is	$v_1^2 + 2v_2^2 - 8v_2^2 t$	hen index and							
Signature of the qua	dratic form is			[]					
A) 1,3	B) 2,1	C) 3,2	D) 0,1							
39. The quadratic form corresponding to the symmetric matrix $\begin{bmatrix} 1 & 2 \\ 2 & -4 \end{bmatrix}$ is										
A) $x^2 - 4y^2 + 4xy$		$\mathbf{B}) \mathbf{x}^2 4 \mathbf{y}^2 4 \mathbf{x} \mathbf{y}$								
$C) x^2 + 4y^2 + 4xy$		D) $x^2 + 4y^2 - 4xy$,							
40. The Eigen values of A are 0,1,0 then the rank of the quadratic form is										
A) 1	B) 2	C) 3	D) 0							

Prepared by: N.RAJAGOPAL REDDY